Восполнить гликоген можно с помощью правильного питания и восстановления после физических нагрузок. Основным источником углеводов, необходимых для replenishment гликогена, являются продукты, богатые крахмалом, такие как крупы, картофель и фруктовые соки. Употребление углеводов сразу после тренировки способствует более эффективному восстановлению, так как мышцы в это время особенно восприимчивы к гликогенезу.
Кроме того, следует учитывать и потребление белков, которые в сочетании с углеводами способствуют лучшему усвоению гликогена. Хорошим вариантом будет комбинированное питание, например, белковый коктейль с бананом или йогурт с медом. Так вы не только восполните запасы гликогена, но и поддержите общий уровень энергии и восстановление организма.
Гликоген для бегуна: сколько его нужно до, во время и после забега
Гликоген — это энергетический запас спортсмена. Выносливость напрямую зависит от объёмов гликогена организме. Какие продукты максимально помогают обогатить организм гликогеном до, во время и после забега? Рассказывает спортивный диетолог и нутрициолог Тина Белякова.
Гликогеновое «депо» — это энергетический пул человека, который расходуется в первую очередь. Он базируется в печени и внутри мышц. Чем больше мышечная масса, тем выше запасы гликогена. Когда вы начинаете интенсивно тренироваться, происходит постепенное расщепление молекул глюкозы для обеспечения организма энергией.
Вы наверняка слышали выражение «загрузиться углеводами перед тренировкой». Чем же это лучше всего делать? Любой углевод, сложный или простой — глюкоза, разница в длине цепочки.
Простые углеводы содержат односложные молекулы. Они усваиваются быстро, в течение получаса.
Сложные углеводы действуют до 6-ти часов. Они расщепляются постепенно, отсоединяя единичные молекулы на энергию.
Если в дело вмешивается глюкоза
Угеводы и белки в результате глюконеогенеза могут распадаться на глюкозу. Приведу пример: гречка усваивается и даёт энергию в течение пяти часов, рафинированный сахар — за 15-20 минут.
Мозг питается исключительно глюкозой. Ему требуется 2 грамма сахара в час. Сладкоежки могут пользоваться этой уловкой и при этом оставаться стройными.
Будьте внимательны с фруктозой. Её избыток ведёт к ожирению быстрее, чем рафинад. Всё дело в специфике влияния на инсулин. Если глюкоза способна использоваться всеми клетками организма в качестве источника энергии, то фруктоза может перерабатываться только печенью. Поэтому я не рекомендую заедать основные приёмы пищи фруктами, тем более запивать соками.
Если запасы гликогена истощаются, скорость и выносливость спортсмена начинают падать. Подкожный жир также может использоваться для работы. Для окисления ему необходим кислород. Этот вариант подходит бегунам, а для силовых нагрузок (анаэробная работа) такой вид топлива недоступен.
На что лучше ориентироваться спортсменам
Людям, ориентированным на спортивные показатели, нужно придерживаться высокоуглеводного рациона. До 60% общей калорийности будет приходиться на углеводы, 20% на белковую пищу и примерно столько же на жиры. За час-полтора до тренировки рекомендуется приём пищи, содержащей сложные углеводы. К ним относятся гречка, киноа, булгур, полба, перловка, макароны из твёрдых сортов пшеницы, необдирные сорта риса и так далее. Как источник углеводов и белка можно использовать бобовые культуры, если нет пищевой непереносимости — нут, маш, чечевица и фасоль.
Если есть задача убрать несколько лишних килограммов, стоит взять на контроль потребление сухофруктов, бананов, винограда, хурмы, хлеба (в том числе бездрожжевого). Не говоря уже о сладостях, в них организм и вовсе не нуждается. Он и без того найдёт, где взять глюкозу. Во время забега на помощь придёт изотоник.
Сразу после забега многие используют простые углеводы. Хотя, на мой взгляд, нужно подпитать мышцы, которые обеспечивали движение. Как вариант подойдёт протеиновый коктейль. Через пару часов после интенсивной нагрузки включите в рацион белки и углеводы. Организм нуждается в восстановлении.
Это может быть овощной салат, а также рис с птицей или нежирной говядиной, кроликом, рыбой, морепродуктами.
Не забывайте про питьевой режим, чтобы не допустить дегидратации тканей. Спортсмен вдвойне нуждается в богатом рационе. А это и витамины, и минералы. Поэтому своевременно проверяйте анализы и включайте всё необходимое, чтоб не было сбоев в работе организма.
Как восполнить гликоген
Восстановление мышечного гликогена. Питательные вещества для мышц
а) Восстановление мышечного гликогена. Восстановление полностью истощенного гликогена — дело непростое. На это часто требуются дни, а не секунды, минуты или часы, необходимые для восстановления метаболической фосфагенной системы и молочной кислоты. На рисунке ниже показан процесс восстановления при трех условиях:
(2) у людей, в диете которых много жиров и белков;
(3) у людей без пищи.

Влияние диеты на скорость восстановления мышечного гликогена после длительной физической нагрузки
Видно, что у людей, в пище которых много углеводов, полное восстановление происходит примерно за 2 дня. И наоборот, у людей, потребляющих много жиров и белков или не принимающих пищу совсем, наблюдается очень небольшое восстановление через 5 дней. Это сравнение свидетельствует о том, что для спортсмена важно:
(1) соблюдать высокоуглеводную диету перед истощающим спортивным мероприятием;
(2) не подвергаться истощающей физической нагрузке в течение 48 ч до предстоящего мероприятия.
б) Питательные вещества, используемые во время мышечной активности. Кроме большого количества углеводов, используемых мышцами во время физической работы, особенно на ранних этапах нагрузки, в качестве источника энергии мышцы используют большое количество жира в форме жирных кислот и ацетоуксусной кислоты (обсуждается в отдельной статье на сайте, просим вас пользоваться формой поиска выше) и в гораздо меньшей степени — белки в форме аминокислот. Фактически даже в наилучших условиях при длительных спортивных нагрузках, продолжающихся более 4-5 ч, запасы мышечного гликогена истощаются практически полностью и в дальнейшем мало участвуют в обеспечении энергией мышечных сокращений. В этих случаях мышца зависит от других источников энергии, главным образом от жиров.
На рисунке ниже представлены данные об относительном использовании углеводов и жиров в качестве источника энергии во время длительной истощающей физической нагрузки при трех типах диеты: высокоуглеводной, смешанной и богатой жирами.

Влияние длительности нагрузки и типа диеты на относительный процент углеводов или жиров, используемых мышцами в качестве источника энергии
Видно, что в первые секунды или минуты нагрузки основным поставщиком энергии являются углеводы, но ко времени истощения до 60-85% энергии извлекаются из жиров, а не из углеводов.
Не вся энергия углеводов извлекается из запасов мышечного гликогена. На самом деле, почти столько же гликогена хранится в печени, откуда он может выделяться в кровь в форме глюкозы и захватываться мышцами для использования в качестве источника энергии. Кроме того, растворы глюкозы, которые дают пить спортсменам в ходе спортивного мероприятия, могут обеспечить до 30-40% энергии, необходимой во время длительных нагрузок, например при марафонском беге.
Следовательно, при наличии мышечного гликогена и глюкозы крови именно они являются основными питательными веществами, используемыми как источник энергии для интенсивной мышечной активности. Даже в этом случае для обеспечения энергией долговременной тяжелой нагрузки обычно примерно через 3-4 ч после начала работы источником более 50% необходимой энергии являются жиры.
в) Влияние спортивных тренировок на мышцы и их производительность. Важность тренировки с максимальной нагрузкой. Один из кардинальных принципов развития мышц во время спортивных тренировок следующий. Сила мышц, функционирующих без нагрузки, даже если они сокращаются бесконечно долго, практически не возрастает. С другой стороны, если мышцы сокращаются в режиме, превышающем 50% максимальной силы сокращения, их сила быстро нарастает, даже если сокращения выполняются лишь несколько раз в день.
Основанные на этом принципе эксперименты по развитию мышц показали, что комплекс упражнений, состоящий примерно из 6 мышечных сокращений с максимальной нагрузкой, выполняемых по 3 раза в день 3 дня в неделю, дает оптимальное увеличение мышечной силы без развития хронического мышечного утомления.
Верхняя кривая на рисунке ниже показывает процентное увеличение силы, которое можно достичь с помощью этой тренирующей программы с максимальной нагрузкой у предварительно нетренированного молодого человека.

Ориентировочное влияние физической тренировки с оптимальной нагрузкой на увеличение мышечной силы в течение 10-недельного тренировочного периода
Видно, что мышечная сила увеличивается примерно на 30% во время первых 6-8 нед, но после этого практически не меняется (плато на кривой). Наряду с этим увеличением силы примерно на такой же процент возрастает мышечная масса, что называется мышечной гипертрофией.
В пожилом возрасте многие люди так мало двигаются, что их мышцы атрофируются в чрезвычайной степени. В этих случаях мышечная тренировка часто увеличивает мышечную силу более чем на 100%.
Всё, что вы хотели знать про гликоген
![]()
Уже многие годы одна из самых горячих тем для обсуждения в спорте на выносливость — это углеводы. Они пережили периоды предания анафеме, безмерного почитания, слегка прохладного отношения, полного забвения и сдержанного оптимизма.
Но факт остается неизменен: углеводы — всё ещё лучшие друзья спорта на выносливость. И если углеводы — это пешки в игре на выносливость, то король — это гликоген. Про гликоген слышали все, его запасы мы активно пополняем перед стартами, на него уповаем при интенсивных тренировках и полагаемся в момент разрушения легендарной марафонской стены.
Что же такое гликоген, зачем он нам вообще нужен, какую роль играет в жизни и в спорте, где находится и какой бывает? Об этом (и не только) мы поговорим в статье.
С чего всё началось?
Кратко
С 60-х годов известно, что гликоген позволяет спортсменам больше и качественнее тренироваться. Современная концепция гласит, что истощение запасов гликогена — важная причина усталости во время тренировок и соревнований.
Подробнее
Изучение углеводного обмена в спорте — довольно широкая область исследований, которой уже более 100 лет. Это кажется невероятным, но еще в 1920 году Август Крог и Йоханнес Линдхард опубликовали статью, в которой сообщалось об эффективности углеводов в качестве источника топлива во время тренировок. Более того, авторы продемонстрировали, что люди, которые перед тренировкой придерживаются низкоуглеводной диеты, на тренировках утомляются раньше, чем те, кто получает достаточно углеводов в диете.
Чуть позже, в 1924 году, Сэмюэль Левин опубликовал статью, где описал, что у финишеров Бостонского марафона 1923 года наблюдалось снижение концентрации глюкозы в крови (менее 4 ммоль/л). Это навело Левина на мысль, что низкая доступность углеводов могла быть как-то связана с высокой утомляемостью спортсменов.
Именно эти винтажные исследования впервые предоставили доказательства того, что углеводы являются важным источником энергии и помогают поддерживать производительность у спортсменов.
Несмотря на имеющиеся с 1920-х годов научные данные, большая часть основного понимания важности и метаболизма углеводов была разработана скандинавскими исследователями только в конце 1960-х годов, когда стала доступна методика биопсии мышц — отщипывание небольшого образца ткани для последующего изучения под микроскопом.
Скандинавские ученые провели целую серию экспериментов, продемонстрировав следующее:
Наука о питании, в том числе о спортивном, продолжала активно развиваться на протяжении 1980-х и 1990-х годов, когда было доказано, что употребление углеводов во время тренировки улучшает качество этой самой тренировки, а также производительность спортсмена в целом.
Собранные воедино, находки 20-х, 60-х и 90-х годов позволили сформировать концепцию, которая говорит о том, что истощение запасов гликогена может являться одной из важных причин развития усталости во время тренировок и соревнований.
Откуда энергия?
Кратко
Главный источник энергии в организме — АТФ. Главные источники АТФ — жиры, запас которых в организме практически не ограничен, и углеводы, которые являются основным источником топлива в спорте на выносливость.
Подробнее
Для того, чтобы поддерживать сокращение скелетных мышц во время тренировок разной интенсивности и продолжительности, требуется постоянный приток энергии, в качестве которого организм использует аденозинтрифосфат или АТФ.
Откуда в нашем организме берется АТФ? Ответ прост и сложен одновременно — АТФ образуется в результате окисления жиров и углеводов.
Жиры — наиболее концентрированный источник энергии в организме. Они обеспечивают примерно в два раза больше энергии, чем углеводы или белки (9 калорий на грамм жиров против 4 калорий на грамм углеводов/белков).
Минус жиров в том, что процесс их окисления происходит относительно медленно, если сравнить его с окислением углеводов. Ну, а основной плюс жиров состоит в том, что они представляют собой практически неограниченный источник энергии для спортсменов. Даже у худых людей в мышечных волокнах и жировых клетках накапливается достаточно жира, чтобы обеспечить до 100 000 калорий, что вполне достаточно для более чем 100 часов бега.
Итак, во время тренировок накопленные в организме жиры (в форме находящихся внутри клеток триглицеридов) расщепляются на жирные кислоты, которые транспортируются с кровью к мышцам, где и используются для образования АТФ. Жиры, помимо прочих депо, могут храниться сразу в мышечных волокнах, где к ним легче получить доступ во время тренировок.
Второй, куда более быстрый источник образования АТФ в нашем организме — это глюкоза, поступающая из крови и внутримышечных запасов, где она хранится в виде гликогена.
В противовес жировой ткани, запасы гликогена в организме довольно ограничены, и в среднем составляют около 2000 ккал. Этих запасов гликогена хватит только на 32–33 километра бега.
Во время тренировок и соревнований производство АТФ в мышцах огромно, ведь даже в состоянии покоя каждая мышечная клетка содержит примерно 1 миллиард молекул АТФ, каждая из которых будет использоваться и заменяться в среднем каждые 2 минуты.
Во время интенсивной тренировки выработка мышечного АТФ может увеличиваться примерно в 1000 раз. Это происходит для того, чтобы удовлетворить потребности в интенсивном сокращении мышц и поддержать необходимый нам темп бега.
Во время тренировок с интенсивностью, превышающей примерно 60% от максимального потребления кислорода (МПК или VO2max), глюкоза в крови и мышечный гликоген являются основными источниками, которые используются для производства АТФ, необходимого для поддержания заданной скорости тренировки.
В значительной мере это происходит потому, что при интенсивных тренировках задействуется большое количество быстро сокращающихся двигательных единиц (мышечных волокон), что увеличивает зависимость от углеводов, как основного источника топлива.
Что такое гликоген?
Кратко
Гликоген — это универсальный источник топлива, который хранится в основном внутри клеток мышц и печени. Гликоген в организме существует в двух формах: прогликоген и макрогликоген. Подобные формы объясняют двухфазное восполнение запасов гликогена: быстрое накопление в первые несколько часов после тренировки и более медленное восполнение после.
Подробнее
Организм хранит углеводы в виде гликогена, который содержится в двух депо: в печени (примерно 100 г), и в мышцах (примерно 400 г), при этом еще около пяти грамм его циркулирует в крови в виде глюкозы.
Гликоген — это универсальный источник топлива, который хранится внутри клеток и занимает примерно 2% объема сердечных клеток, 1–2% объема клеток скелетных мышц и 5–6% объема клеток печени.
Поскольку гликоген состоит из отдельных молекул глюкозы, будет правильно говорить о частице гликогена. Частицы гликогена в клетках печени могут иметь размер в 10 раз больший, чем в клетках скелетных мышц, а каждая частица при этом содержит более 50000 молекул глюкозы.
Формирование частиц гликогена запускается при помощи специального фермента гликогенина, который связывает молекулы уридиндифосфата и глюкозы с образованием «зародышей» гликогена. После этого в дело вступает фермент гликогенсинтаза, которая, вместе со специальным разветвляющим ферментом работают сообща, чтобы укрупнить частицу гликогена.
Структура гликогена напоминает ветвящееся дерево. Такая «ветвистая» форма увеличивает плотность, растворимость и площадь поверхности частиц гликогена.

Гликоген разделяется на два типа: прогликоген и макрогликоген.
Начальный процесс проходит довольно быстро, а вот дополнительные единицы глюкозы добавляются куда медленнее, создавая более крупные частицы и образовывая макрогликоген.
Разделение гликогена на два «подвида» может объяснить двухфазный характер восполнения запасов гликогена: быстрое накопление в течение первых нескольких часов после тренировки (то самое «углеводное окно», которое длится 30–40 минут) и более медленное восполнение запасов гликогена после этого (период первых 24 часов после тренировки).
Гликоген мышц
Кратко
Мышечный гликоген представляет собой источник топлива для мышц, имеющийся в них самих.
Подробнее
Интересно, что особенности тренировки диктуют то, как будет истощаться гликоген во время тренировки. Во время длительной тренировки с равномерным темпом, например, медленного длинного бега, преимущественное истощение гликогена наблюдается в волокнах I типа, тогда как во время тренировки с интенсивностью, близкой к максимальной или сверхмаксимальной, задействуются волокна II типа, и в них же видно значительное истощение гликогена.
Использование современной электронной микроскопии показало, что мышечный гликоген хранится в трех различных локациях:
- внутри тонких нитей-миофибрилл (внутримиофибриллярный гликоген, 5–15% от общего пула гликогена);
- между миофибрилл (межмиофибриллярный гликоген, 75% от общего пула гликогена);
- под тонкой, прозрачной оболочкой, окружающей каждое поперечно-полосатое мышечное волокно — сарколеммой (субсарколеммальный гликоген, 5–15% от общего пула гликогена).

Считается, что у спортсменов на выносливость как внутримиофибриллярные, так и субсарколеммальные запасы гликогена больше в волокнах I типа по сравнению с волокнами II типа, тогда как межмиофибриллярные запасы гликогена больше в волокнах II типа.
Что же касается тренировок, то чем интенсивнее тренировка, тем быстрее истощаются внутримиофибриллярные запасы гликогена. Кроме того, была показана невозможность восстановления этого специфического места хранения гликогена в первые часы после окончания тренировки из-за нарушения высвобождения кальция внутри клеток.
Гликоген и вода
Кратко
Гликоген «притягивает» воду — этим объясняется увеличение веса при восполнении запасов гликогена и сброс веса после длительной или интенсивной тренировки.
Подробнее
Каждый грамм гликогена всегда «хранится» вместе с тремя граммами воды.
Поэтому увеличение веса, сопровождающее тренировки даже элитных спортсменов — это довольно типичная реакция, развивающаяся в ответ на суперкомпенсацию гликогена.
Понятие «суперкомпенсация» часто встречается в спорте и означает, что некий параметр (сила, выносливость, запасы гликогена) после тренировки не только восстанавливает свой исходный уровень, но и несколько его превышает.
Доказано, что ни кратковременное голодание, ни продолжительный сидячий образ жизни не влияют на общие запасы гликогена в мышцах. Хотя гликоген в сердце голодающего человека может увеличиваться, поскольку аминокислоты и глицерин, превращаясь в глюкозу, сохраняются в виде гликогена, чтобы обеспечить адекватные запасы энергии для сердца.
Сколько внутри нас гликогена?
Самое большое и важное депо гликогена — клетки скелетных мышц. В мышцах в среднем имеется от 300 до 700 граммов гликогена.
Содержание гликогена в другом депо — клетках печени, также меняется каждый день, в основном оно зависит от содержания углеводов в диете, времени между приемами пищи, а также интенсивности тренировки. Содержание гликогена в печени в среднем составляет 80 граммов, и по разным данным может варьировать от 0 до 160 граммов.
Несмотря на то, что гликоген в мышцах и печени составляет малую часть от общих запасов топлива в организме, гликоген мышц является тем ключевым топливом, которое используется организмом во время тренировок средней или высокой интенсивности.
Запасы гликогена в печени и мышцах уменьшаются во время любой физической активности: чем она дольше и интенсивнее, тем больше скорость и общее сокращение запасов гликогена в депо.
Диета, которая содержит достаточное количество углеводов и калорий, чтобы соответствовать ежедневным затратам или даже превышать их, приводит к так называемой суперкомпенсации запасов гликогена в мышцах, развивающейся в течение дней и даже недель.
Улучшение тренированности является дополнительным стимулом для увеличения запасов гликогена в мышцах, помогая обеспечить доступную углеводную энергию для интенсивных и продолжительных тренировок и соревнований.
В чем роль гликогена?
Удивительно, что всего лишь 500–800 грамм субстрата, хранящегося в организме, могут оказывать столь глубокое воздействие на множество тканей, органов и систем, а метаболизм этого субстрата имеет значимое влияние на здоровье и работоспособность человека как во время отдыха, так и при физической нагрузке.
Помимо основной роли «склада топлива», понимание метаболизма углеводов в последнее время значительно углубилось, и сейчас говорят о том, что гликоген — это больше, чем просто хранилище. Он действует как регулятор многих ключевых клеточных процессов, связанных со стимулированием окислительных реакций, изменяет чувствительность организма к инсулину, регулирует сокращение мышц, распад белков и ряд других процессов.
Более того, несколько лет назад было доказано, что способность углеводов улучшать производительность не ограничивается обычным приемом углеводов, и даже простое прополаскивание рта углеводными растворами без глотания может улучшает выносливость на гонке и тренировке.
Топливо типа «гликоген»
Кратко
Основное депо гликогена — мышцы, второе по значимости — печень. Мышечный гликоген расходуется на нужды самих мышц, тогда как гликоген печени необходим для поддержания постоянной концентрации глюкозы в крови.
Подробнее
Глюкоза — это основной и самый важный источник энергии для клеток мозга и всего организма. Более того, в нормальных условиях глюкоза является тем единственным топливом, которое головной мозг использует для производства высокоэнергетической валюты — АТФ.
Наш мозг — самый главный потребитель глюкозы крови, который утилизирует примерно 60% глюкозы, находящейся в крови.
Поэтому важно поддерживать нормальную концентрацию глюкозы в крови как во время отдыха/восстановления, так и во время тренировок.
В основе рекомендации, которая говорит о необходимости приема 130 грамм углеводов в день, прежде всего лежит удовлетворение запроса головного мозга в питании.
Гликоген печени используется для постоянного пополнения того небольшого (около 4 г) уровня глюкозы, который циркулирует в крови. Помните, что головной мозг очень активно потребляет глюкозу, и при этом практически не имеет своих собственных запасов? Так вот, для того, чтобы обеспечить постоянную концентрацию глюкозы в головном мозге, печень расщепляет гликоген с образованием глюкозы, а эта глюкоза выделяется в кровоток со скоростью, равной потреблению глюкозы из крови тканями. Такой механизм приводит к стабильному содержанию глюкозы в крови (4,0 — 5,5 ммоль/л).
Когда запасы гликогена в печени падают до такого низкого уровня, что получать глюкозу путем расщепления гликогена становится невозможно, печень начинает переключаться на так называемый глюконеогенез — процесс производства глюкозы из аминокислот и глицерина. И все бы хорошо, однако скорость такого производства весьма ограничена и часто не успевает за потреблением глюкозы из крови во время тренировок.
Что же делать организму? Ведь с учетом того, что в печени в среднем содержится около 80 грамм (70–135 г) гликогена, с такими запасами у нас не получится закончить никакую тренировку.
Правильный ответ — использовать гликоген мышц, где его от 300 до 900 граммов. Ну и он уже находится ровно там, где нужен — в мышечной ткани. Использование мышечного гликогена во время тренировки позволяет снизить потребление глюкозы из крови, тем самым помогая поддерживать постоянный уровень глюкозы в крови при отсутствии поступления углеводов извне.
Об этом часто забывают, но достаточное потребление углеводов во время тренировки помогает поддерживать запасы гликогена в печени и сберегает гликоген в быстро сокращающихся мышечных волокнах II типа.
Помимо своего основного места хранения — клеток мышц и печени, небольшие количества гликогена есть в клетках сердца, сосудов, почек, красных и белых кровяных телец и даже в жировых клетках. Следы гликогена найдены даже в клетках мозга, где его примерно в 100 раз меньше, чем в мышечных клетках.
Гликогеновая вариабельность
Кратко
Для восполнения запасов гликогена необходимо придерживаться высокоуглеводной диеты. Обычно для полного восстановления гликогена в мышцах требуется 24 часа.
Подробнее
Если мы имеем дело с тренированным и накормленным спортсменом, то концентрация гликогена в его мышцах после 8–12 часов отдыха составит 150 ммоль/кг сырого веса мышцы.
Иногда она может достигать отметки в 200 ммоль/кг — это уже упомянутое состояние суперкомпенсации, которое развивается у отдохнувших спортсменов после нескольких дней на высокоуглеводной диете. Подобная суперкомпенсация часто имеет место перед целевым стартом.
Другими словами, существует некий минимальный уровень гликогена мышц, ниже которого сократительная функция и работоспособность (мощность) мышц снижаются.
Например, интенсивная двухчасовая тренировка может приводить к падению мышечного гликогена на 50%, снижая его значения до того теоретического порога, при котором нарушается функция мышц, и затрудняется проведение последующей тренировки.
Теоретически, при скорости ресинтеза гликогена 5–6 ммоль/кг/час, потребление достаточного количества углеводов сможет позволить провести следующую тренировку уже через 4 часа. И все бы хорошо, но ресинтез мышечного гликогена — это неоднородный процесс, и поэтому регулярно тренирующиеся спортсмены обычно имеют запасы мышечного гликогена намного ниже уровня суперкомпенсации.
Обычно для полного восстановления гликогена в мышцах требуется 24 часа, при скорости ресинтеза в 5–6 ммоль/кг/ч. Ряд исследований доказал, что 24 часа на высокоуглеводной диете (9,8 г/кг/сут) восстанавливают примерно 93% мышечного гликогена, окисленного в течение предшествующей 2-часовой тренировки с интенсивностью 65% VO2max. При этом низкоуглеводная диета (1,9 г/кг/сут) восстановила только 13% гликогена.
Гликоген и тренировки
Кратко
Потребление углеводов должно варьироваться в зависимости от типа и интенсивности тренировок: меньше — в дни легких тренировок, значительно выше — в дни интенсивных или продолжительных тренировок.
Подробнее
Спортсмены, которые тренируются большую часть дней в неделю, иногда выполняя несколько тренировок в день, чаще всего имеют неполные запасы гликогена в мышцах.
Было обнаружено, что приверженцы умеренно- или высокоуглеводной диет (5 г/кг против 10 г/кг углеводов в день) могли поддерживать свои запасы гликогена во время недели тренировок при нахождении на высокоуглеводной диете, но отмечали снижение мышечного гликогена на 30–36% при умеренно-углеводной диете.
Самое интересное в том, что более низкие уровни гликогена в мышцах никак не повлияли на способность тренироваться в целом или на качество тренировок, в частности.
Если же спортсмен сидит на низкоуглеводных диетах, то его производительность быстро ухудшается.
Помимо диеты, у нас есть нормальный ежедневный цикл колебаний запасов гликогена в мышцах, что является важным внутриклеточным сигналом для стимуляции ряда адаптаций, необходимых для повышения производительности и усиления внутриклеточных реакций.
Сразу после тренировки мышечные клетки, которые испытали на себе значительное падение содержания гликогена, быстро подготавливаются к гликогенезу — процессу образования нового гликогена. Более того, использование гликогена во время тренировки само по себе запускает процесс синтеза гликогена во время фазы отдыха и восстановления.
Когда после тренировки углеводы поступают в организм, увеличивается выведение инсулина из поджелудочной железы, повышается чувствительность к инсулину в мышечных клетках и поглощение глюкозы мышечными клетками, а также растет активность ферментов, отвечающих за синтез нового гликогена. Подобный комплекс реакций может быть активен в течение 48 часов.
Стимулом к высокому темпу синтеза гликогена может быть прием 1,0–1,2 г углеводов/кг/ч сразу после тренировки. Когда между тренировками есть 24 часа, то 10 г/кг углеводов вместе с достаточным количеством калорий хватит для максимизации восстановления гликогена. При этом потребление более 10 г углеводов/кг/день не дает дополнительных преимуществ для восстановления гликогена.
Стоит запомнить, что основным фактором, влияющим на скорость и степень восполнения запасов гликогена в мышцах, является общее потребление калорий.
Даже если после тренировки потребляется достаточное количество углеводов, восполнение запасов гликогена не будет полным, если не будет получено достаточное количество калорий.
Ежедневное потребление углеводов должно отражать степень окисления углеводов во время тренировки: меньше — в дни легких тренировок, значительно выше — в дни интенсивных или продолжительных тренировок.
Количество и виды углеводов
Кратко
В первые часы после тренировки продукты с высоким гликемическим индексом могут ускорить синтез гликогена в мышцах. Продукты с низким гликемическим индексом перевариваются и усваиваются медленнее, это приводит к более медленному повышению уровня глюкозы и инсулина в крови.
Подробнее
Долгосрочное восстановление гликогена, например, за сутки и более, не зависит от вида принимаемых углеводов, а зависит от общего количества потребляемых углеводов. При этом, фруктоза лучше стимулирует восстановление гликогена в печени, а глюкоза — гликоген в мышцах, но большинство физически активных людей обычно потребляют достаточно фруктозы и глюкозы с продуктами и напитками для восстановления, и нет необходимости беспокоиться об адекватности потребления фруктозы с пищей.
Как твердые, так и жидкие формы углеводов связаны с одинаковой скоростью синтеза гликогена, поэтому спортсмены могут удовлетворить свои ежедневные потребности в углеводах, потребляя богатые углеводами продукты и напитки, которые им подходят больше всего.
В первые часы после тренировки потребление продуктов с высоким гликемическим индексом (ГИ) может ускорить восстановление гликогена в мышцах. Продукты с низким ГИ перевариваются и усваиваются медленнее, чем продукты с высоким ГИ, что приводит к более медленному повышению уровня глюкозы и инсулина в крови.
Употребление углеводов с высоким ГИ эффективно увеличивает запасы гликогена в мышцах после упражнений. Диета с высоким ГИ приводит к большему гликемическому и инсулинемическому ответам, а также к большему восстановлению мышечного гликогена.
Увеличение содержания углеводов в рационе до 10 г/кг/день (по сравнению с нормой 6 г/кг/день) приводит к увеличению запасов гликогена в мышцах перед тренировкой на 47%, улучшению показателей производительности на тренировке, но большей зависимости от мышечного гликогена в качестве топлива.
Употребление продуктов с высоким ГИ важно в тех случаях, когда критически важен быстрый ресинтез мышечного гликогена.
Пол, возраст и гликоген
Мужчины и женщины восстанавливают мышечный гликоген с одинаковой скоростью, если после тренировки потребляется достаточное количество углеводов и калорий.
Среди спортсменов в возрасте старше 55 лет повреждение мышц, вызванное тренировками, аналогично наблюдаемому у молодых спортсменов, но скорость восстановления мышц у пожилых людей медленнее, что говорит о том, что восстановление мышечного гликогена также может быть медленнее.
Спортсменам старшего возраста рекомендуется потреблять 35–40 г белков в дополнение к достаточному количеству углеводов, чтобы максимально стимулировать синтез мышечного белка после тренировки. Дополнительное потребление белка также может способствовать синтезу гликогена, особенно при низком потреблении углеводов.
Как повысить уровень гликогена?
Кратко
Подробнее
За время научных поисков и исследований различные авторы разработали и опробовали несколько протоколов, помогающих усилить синтез гликогена в мышцах и печени.
Тренировки с низкими запасами углеводов, соревнования с высокими запасами гликогена (концепция Train low, compete high): целенаправленное сокращение ежедневного потребления углеводов или тренировки после ночного голодания или воздержание от приема углеводов во время и в течение 2 часов после тяжелой тренировки, чтобы способствовать адаптации, которая приводит к повышению запасов гликогена. Это психологически сложная схема, и нет четких доказательств или дополнительных преимуществ такой стратегии в плане увеличения запасов гликогена или повышения производительности.
Прием протеина. Когда спортсмен не может или не успевает потреблять достаточное количество углеводов с пищей, прием 0,3–0,4 г белка/кг может увеличивать синтез гликогена.
Загрузка креатином. Ряд исследований показал усиление накопления гликогена в мышцах при нагрузке добавкой креатина. В то же время другие исследования не обнаружили такого эффекта.




