Какие существуют типы скелетных мышечных волокон

Какие существуют типы скелетных мышечных волокон

Скелетные мышечные волокна подразделяются на три основных типа: медленные, быстрые окислительные и быстрые гликолитические. Медленные волокна, или красные, имеют высокую устойчивость к усталости и приспособлены для длительной аэробной активности, что делает их идеальными для endurance-спорта. Они содержат много миоглобина и митохондрий, что способствует эффективному использованию кислорода.

Быстрые окислительные волокна, или белые, обладают характеристиками как медленных, так и быстрых волокон, обеспечивая хорошую силу и выносливость, но менее устойчивы к усталости. В то же время, быстрые гликолитические волокна предназначены для интенсивной, кратковременной нагрузки и обеспечивают мощность за счет анаэробного метаболизма, но быстро утомляются и имеют низкую выносливость. Это разнообразие типов волокон позволяет организму адаптироваться к различным физическим требованиям.

КЛАССИФИКАЦИИ МЫШЕЧНЫХ ВОЛОКОН

Всем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах. Вот только классификаций этих типов волокон несколько и они не всегда совпадают. Какие же классификации сейчас приняты?

Мышечные волокна делятся:

  1. На белые и красные
  2. На быстрые и медленные
  3. На гликолитические, промежуточные и окислительные
  4. На высокопороговые и низкопороговые.

Разберем все подробно.

Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии заключенной в АТФ, осуществляется благодаря АТФ-аза.

Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ.

В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.

Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые необходимы для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.

По этому признаку мышечные волокна подразделяются на 3 группы:

1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.

2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.

3. Гликолитические мышечные волокна. В них очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты и АТФ; аэробный гликолиз, или окисление – расщепление глюкозы в митохондриях с участием кислорода до углекислого газа, воды и АТФ.)

У не тренирующихся людей обычно быстрые волокна – гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости промежуточные и часть гликолитических волокон можно сделать окислительными, и тогда они, не теряя в силе, перестанут утомляться.

Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервного импульса, который имеет электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни.

Двигательные единицы имеют свой порог возбудимости. Если нервный импульс, посылаемый мозгом, имеет величину ниже этого порога, ДЕ пассивна. Если нервный импульс имеет пороговую для этой ДЕ величину или превышает ее, мышечные волокна сокращаются. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствии двигательного режима, например в коме, или долгом нахождении в гипсе даже медленные мышечные волокна теряют свои митохондрии и соответственно миоглобин и становятся белыми и гликолитическими.

Поэтому в настоящее в спортивной науке считается неправильно говорить: «тренировки направленные на гипертрофию быстрых мышечных волокон», или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще 10 лет назад это считалось допустимо даже в специализированных научных изданиях. Сейчас если мы говорим о тренировочном воздействии на МВ, то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель поднять максимальный вес в единичном повторении. В видах спорта требующих проявления выносливости классификации совпадать не будут.

Для наглядности приведу несколько утрированный, хотя теоритически вполне возможный пример. Сразу оговорюсь, что все цифры условные, и их не надо воспринимать буквально. Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок.

Соотношение волокон, предположим, следующее: 90% быстрые, 10% медленные. По окислительному потенциалу 75% гликолитические, 15% промежуточные и 10% окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по 6 повторений. Вес штанги достаточно большой чтобы рекрутировать 75% гликолитических волокон, а окислительный потенциал их настолько низок, что и 6-и повторений достаточно для необходимого закисления мышцы.

Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ. Подробно об этой методике вы можете прочитать в 5-м номере «ЖМ», в моей статье «Тренировка выносливости».

Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторениям с околомаксимальным весом раз в 7-10 дней. Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5% гликолитических волокон, 70% промежуточных и 25% окислительных.

То есть гликолитические стали промежуточными, кроме 5% самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение естественно не изменилось, так же 90% быстрые и 10% медленные. 200 кг он выжал на 1 раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал, используя в тренировках ММУ. 180 кг он выжал на 8 раз, а 150 кг на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту не давая мышцам закислиться, что значительно увеличило их функциональность.

Теперь нашему атлету для увеличения мышечной массы работа на 6 повторений практически ничего не даст. Она задействует в нужном режиме только 5% оставшихся гликолитических волокон. Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И, дополнительно, включить в тренировку стато-динамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25%, и игнорировать их уже нецелесообразно.

Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала! Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-зы, считается некорректным. Только классификация по окислительным способностям мышц!

Какие существуют типы скелетных мышечных волокон Yt_icon_32

ИНН 9704254600 ОГРН 1247700782174

40702810801530000415 АО «АЛЬФА-БАНК» ИНН 7728168971 КПП 770401001 БИК 044525593

Обращаем ваше внимание, что вся информация на сайте, включая цены и акции, предоставлена исключительно для ознакомления и не является публичной офертой (ст. 435 ГК РФ, cт. 437 ГК РФ). Для получения более детальных консультаций по услугам и их стоимости узнавайте по телефону +7 495 055-32-14.

ООО «Спортивные и оздоровительные технологии» не предоставляет медицинских услуг и не заменяет медицинских консультаций. Все рекомендации не носят предписательного характера.

Мышечные ткани

Мышечные ткани — это ткани, для которых способность к сокращению является главным свойством. Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей).

Общими свойствами всех мышечных тканей является сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечнополосатая скелетная и поперечнополосатая сердечная мышечные ткани. Клетки мышечной ткани имеют хорошо развитый цитоскелет, содержат много митохондрий.

Мышцы человека

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (бронхи, кишечник, желудок, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов — коротких одноядерных клеток. Между клетками имеются межклеточные контакты — нексусы (лат. nexus — связь). Благодаря нексусам возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.

Гладкие миоциты, гладкая мышечная ткань

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру мочевого пузыря), сокращается медленно, практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает — сокращается и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов — миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим).

Особо заметим, что в гладкой мышечной ткани миофиламенты собираются в миофибриллы только во время сокращения. У таких временных миофибрилл не может быть регулярной организации, а значит ни у таких миофибрилл, ни у гладких миоцитов не может быть поперечной исчерченности.

Гладкая мышечная ткань сокращается непроизвольно (неподвластна воле человека). Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой. К примеру невозможно по желанию сузить или расширить бронхи, кровеносные сосуды, зрачок.

Гладкая мускулатура

Гладкая мышечная ткань называется неисчерченной, так как не обладает поперечной исчерченностью, характерной для поперечнополосатых скелетной и сердечной мышечных тканей.

Скелетная (поперечнополосатая) мышечная ткань

Скелетная мышечная ткань образует диафрагму (дыхательную мышцу), мускулатуру туловища, конечностей, головы, голосовых связок.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер — миосимпластами. Миосимпласт (греч. sim — вместе + plast — образованный) представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметров (соответствует длине мышцы).

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой. Сократительные элементы — миофибриллы (лат. fibra — волоконце) — длинные тяжеобразные органеллы в миосимпласте (около 1400).

Скелетная мышечная ткань, миосимпласт

Характерная черта данной ткани — поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы — саркомер.

Саркомер (от греч. sarco — мясо (мышца) + mere — маленький)

Саркомер — элементарная сократительная единица поперечнополосатых мышц, структурная единица миофибриллы. В состав саркомера (и миофибриллы в целом) входят миофиламенты (лат. filamentum — нить) двух типов, которые обеспечивают сократимость мышечной ткани.

Саркомер состоит из актиновых (тонких) и миозиновых (толстых) филаментов, которые образованы главным образом белками актином и миозином. Сокращение происходит за счет взаимного перемещения миофиламентов: они тянутся навстречу друг другу, саркомер укорачивается (и мышца в целом).

Строение саркомера

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином, что приводит к изменению конформации тропомиозина (тропонин и тропомиозин — регуляторные белки между нитями актина), за счет чего становится возможно соединение актина и миозина. При сокращении мышц выделяется тепло (сократительный термогенез).

Регуляторные белки тропонин и тропомиозин

Замечу, что трупное окоченение (лат. rigor mortis) — посмертное затвердевание мышц — связано именно с ионами кальция, которые устремляются в область низкой концентрации (в саркоплазму миосимпласта), способствуя связыванию актина и миозина.

После смерти в мышце перестает синтезироваться АТФ, ее уровень быстро снижается. Как следствие этого перестает функционировать Ca-АТФаза — насос, выкачивающий ионы Ca из саркоплазмы в саркоплазматический ретикулум (мембранная органелла мышечных клеток (сходная с ЭПС), в которой запасаются ионы Ca).

В саркоплазме повышается концентрация ионов Ca — замыкаются мостики между актином и миозином, однако разомкнуться они уже не могут, в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura — стягивание, сужение): конечности очень сложно разогнуть или согнуть.

Сокращение мышц

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние миосимпласты (волокна) не возбуждают друг друга, в отличие от гладких миоцитов, где возбуждение предается между соседними клетками через нексусы. Скелетные мышцы сокращаются быстро и быстро утомляются (у гладких мышц фазы сокращения и расслабления растянуты во времени, мало утомляются) .

Скелетные мышцы сокращаются произвольно: они подконтрольны нашему сознанию. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

Строение мышцы

Сердечная поперечнополосатая мышечная ткань

Сердечная мышечная ткань образует мышечную оболочку сердца — миокард (от др.-греч. μῦς «мышца» + καρδία — «сердце»). Миокард — средний слой сердца, составляющий основную часть его массы. При работе сердечная мышечная ткань не утомляется.

Миокард

Сердечная мышечная ткань состоит из кардиомиоцитов — одиночных клеток, имеющих поперечную исчерченность. Соединяясь друг с другом, кардиомиоциты образуют функциональные волокна.

Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство — автоматизм.

Автоматизм — способность сердечной мышечной ткани возбуждаться и сокращаться самопроизвольно, без влияний извне. Это легко можно подтвердить, наблюдая сокращения изолированного сердца лягушки в физиологическом растворе: сокращения сердца в нем будут продолжаться несколько десятков минут после отделения сердца от организма.

Автоматизм сердца, изолированное сердце лягушки сокращается

Места контактов соседних кардиомиоцитов — вставочные диски (в их составе находятся нексусы), благодаря которым возбуждение одной клетки передается на соседние, таким образом волнообразно охватываются возбуждением и сокращаются новые участки миокарда.

Большое число контактов между кардиомиоцитами обеспечивает высокую эффективность и надежность проведения возбуждения по миокарду. Сокращается эта ткань непроизвольно, не утомляется.

На рисунке или микропрепарате узнать данную ткань можно по центральному положению ядер в клетках, поперечной исчерченности, наличию вставочных дисков и анастомозов (греч. anastomosis — отверстие) — мест соединений боковых поверхностей функциональных волокон (кардиомиоцитов).

Сердечная мышечная ткань

В норме возбуждение проводится по проводящей системе сердца от предсердий к желудочкам (однонаправленно). Участок сердечной мышцы, в котором генерируются импульсы, определяющие частоту сердечных сокращений — водитель сердечного ритма.

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker — задающий ритм) клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή — еда, пища) — увеличение объема мышечного волокна в ответ на возрастание нагрузки → объем мышечной массы нарастает (при этом количество мышечных волокон не меняется).

Гипертрофия мышц

В условиях гиподинамии (от греч. ὑπό — под и δύνᾰμις — сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии (греч. а – "не" + trophe – питание). В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Атрофия мышц

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца — состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Гипертрофия сердца

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка — мезодермы.

Зародыш человека

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Оцените статью
Атлетика
Добавить комментарий